阅读上一个主题 :: 阅读下一个主题 |
作者 |
我也给个题目,请高手证明(真或伪): |
 |
所跟贴 |
我也给个题目,请高手证明(真或伪): -- Anonymous - (772 Byte) 2002-3-20 周三, 上午10:45 (398 reads) |
ce [博客] [个人文集]
游客
|
|
|
作者:Anonymous 在 罕见奇谈 发贴, 来自 http://www.hjclub.org
The point is:
Suppose {f_n(x)} is a continous function series which converges to f(x) on [0, 1].
Then:
it's NOT necessarily true that the series
{integral of f_n(x) on [0, 1] } converges to integeral of f(x) on [0, 1].
Mathematically, "convengence in uniform" is a sufficient condition
that's generally satisfied.
Unfortunately, the settings in this problem, as you can check,
does not satisfy it.
In mathematics, this "exchange of limit sign with other operators (integral, derivative, etc.)" cannot be applied arbitrarily. One first has to take the burden
to prove that this exchange is VALID. It's usually a big burden.
作者:Anonymous 在 罕见奇谈 发贴, 来自 http://www.hjclub.org |
|
|
返回顶端 |
|
 |
|
|
|
您不能在本论坛发表新主题 您不能在本论坛回复主题 您不能在本论坛编辑自己的文章 您不能在本论坛删除自己的文章 您不能在本论坛发表投票 您不能在这个论坛添加附件 您不能在这个论坛下载文件
|
based on phpbb, All rights reserved.
|